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Weconsider the problem of determining a set of optimal tolls on the arcs of a multicom-
modity transportation network. The problem is formulated as a bilevel mathematical

program where the upper level consists in a firm that raises revenues from tolls set on arcs of
the network, while the lower level is represented by a group of users travelling on shortest
paths with respect to a generalized travel cost.

Introduction
There is no denying a renewed interest in toll roads,
either managed by governments or private societies.
Toll roads may help alleviate congestion while putting
the monetary burden on the actual users of the infra-
structure. Many projects around cities such as Paris,
New York, or Toronto are being contemplated. In all
these, electronic toll collection replaces the traditional
toll booth of yesteryear and allows for flexible invoic-
ing strategies.
The literature devoted to road pricing by

economists and transportation researchers is rich,
and mostly focuses on reducing congestion and the
associated negative externalities such as pollution
(Cropper and Oates 1992) through demand regula-
tion. Morrisson (1986) studied, both from a theoretical
and empirical point of view, marginal cost pricing
policies which induce an optimal use of the network.
In this case, a congestion fee can be viewed as a user
charge based on the difference between the social
cost and the average cost perceived by the traveller.
This analysis can also be considered in a dynamic
setting where commuters are allowed to select their
individual departure time (Arnott et al. 1990) as well

as their route. Some authors (Verhoef et al. 1995,
Mcdonald 1995) have investigated real-life situations
where marginal cost pricing theory is not applicable,
because of technological or political constraints. Pur-
suing the idea of marginal cost pricing, Larsson and
Patriksson (1998) and Hearn and Ramana (1998) pro-
posed a “goal programming” approach where they
optimize a secondary criterion over the set of tolls
(denoted “valid tolls”) that induce a system optimal
traffic assignment.
On the other hand, profit maximizing and system

optimal tolls have been studied, on simplistic net-
work topologies, by Beckman (1965) and by Verhoef
(1996). In this vein of research, Viton (1995) consid-
ered the economic viability of a private road com-
peting with a free-access road. In practice, analyses
frequently resort to simulation; see, for instance, the
article of Mekky (1994) concerning Highway 407 in
the vicinity of Toronto.
In contrast with the above-mentioned studies, we

consider a sequential game played between a pre-
scient owner (the “leader”) and the commuters
(the “follower”) that fits the framework of bilevel
programming. It has been introduced by Labbé
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et al. (1998) and applied to the optimal tariff-
ing of single-commodity transportation services by
Brotcorne (1998) and Brotcorne et al. (2000). More pre-
cisely, we consider the situation where the owner of
a private toll highway seeks to maximize revenues
raised from tolls set on a subset of arcs of a mul-
ticommodity, fixed demand transportation network,
and where the commuters are assigned to shortest
paths with respect to a generalized cost. In our model,
we assume that congestion is not affected by the
rerouting that could result from the introduction of
tolls. An explicit account of congestion would radi-
cally transform the mathematical nature of the model
and calls for entirely different algorithmic approaches.
Note that such a model, involving queueing delays,
was introduced by Yan and Lam (1996), but that these
authors only addressed a simplistic two-arc situation.
In short, the main contribution of the paper is a

robust algorithmic scheme that can solve to near opti-
mality toll-setting problems of significant sizes. The
proposed algorithms constitute nontrivial extensions
to the multicommodity case of heuristics developed
by Brotcorne et al. (2000).

1. A Bilevel Formulation of the
Toll-Setting Problem

Let G= �� ��� be a transportation network where �
denotes the set of nodes and where the arc set � is
partitioned into the subset �1 of toll arcs and the sub-
set �2 of toll-free arcs. With each arc a of �1 is asso-
ciated a generalized travel cost composed of a fixed
part ca representing the minimal unit travel cost, and
an additional unknown toll Ta expressed in time units.
Any arc a of �2 bears a fixed unit travel cost da.
Let � denote the set of commodities. Each com-

modity k is associated with an origin-destination pair
�o�k��d�k��. The demand vector bk associated with
each commodity k is specified by:

bki =



nk if i = o�k��
−nk if i = d�k��
0 otherwise�

where nk represents the number of users of commod-
ity k. Finally, xka denotes the number of users of com-
modity k on arc a ∈�1, and yka denotes the number of
users of commodity k on arc a ∈ �2.

Neglecting congestion and assuming that demand
is fixed, users are assigned to shortest paths linking
their departure and arrival nodes, for given values of
the tolls Ta set at the upper level of decision making.
While the owner and the commuters act in a non-
cooperative fashion, we assume that, faced with two
equally (un)attractive alternatives, a user will select
the path that yields the highest revenue for the owner,
i.e., in all likelihood, the quickest. This assumption is
not unrealistic in that, given two equivalent paths, the
one generating the highest revenue could be made the
most attractive through a minute reduction of one of
its tolls.
Another assumption underlying the above model

is that the “value-of-time” parameter, which allows
the conversion from time to money units, is uniform
through the entire population of network users. How-
ever, our methodology could quite easily deal with
the more general situation where users are distributed
into classes, each endowed with its own perception of
the value of one time unit, at the expense of a larger
network. In this multiclass model, commuters associ-
ated with the same origin-destination pair could yet
be assigned to different paths, depending on their per-
ception of travel time.
Based on the above notation, the road pricing prob-

lem (RPP) can be formulated as a bilevel program
with bilinear objectives and linear constraints, where
it is understood that the flows xka must be part of an
optimal solution of the lower linear program parame-
terized by the upper-level toll vector T . If we assume
that the toll Ta cannot exceed a prescribed, possibly
infinite, upper bound Tmaxa , this bilevel problem takes
the form

RPP � max
T�x�y

∑
a∈�1

Ta
∑
k∈�
xka

s.t. Ta ≤ Tmaxa ∀a ∈ �1�

min
x�y

∑
k∈�

(∑
a∈�1
�ca+Ta�xka+

∑
a∈�2

day
k
a

)

s.t.
∑
a∈i+

(
xka+yka

)− ∑
a∈i−

(
xka+yka

)= bki
∀k ∈��∀ i ∈ � �

xka ≥ 0 ∀k ∈��∀a ∈ �1�

yka ≥ 0 ∀k ∈��∀a ∈ �2�
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The leader’s objective is to maximize the total rev-
enue, which is the sum of the products between toll
Ta and the number of users on arc a. The objective of
the lower-level problem is to minimize the total cost
of the paths selected by the network users. Lower-
level constraints are derived from flow conservation
(demand) and flow nonnegativity.
As noticed by Labbé et al. (1998) for the general tax-

ation problem, the leader’s objective is neither a con-
tinuous nor a convex function of T . However, since
it is upper semi-continuous, there exists at least one
optimal solution to the above road pricing problem.
Throughout the remainder of this paper, we assume

that there exists at least one path composed of
untolled arcs for each commodity. This assumption
prevents the optimal profit from growing unbounded
and allows the derivation of a nontrivial upper bound
on the leader’s profit. This is expressed as the dif-
ference of two follower’s optimal objectives, the first
corresponding to infinite tolls (access to toll arcs is
denied) and the second corresponding to null tolls.
Note that this bound need not be reached at an opti-
mal solution of the bilevel program. Note also that
an optimal solution may involve negative tolls, as
shown on the example of Figure 1, where demand
is set to one on origin-destination pairs 1–2 and 3–4,
and arcs (5, 6) and (6, 4) are subject to tolls. In this
case, compensating interactions between tolls play an
active role and the optimal solution, corresponding to
a profit of 8 monetary units, is reached for T56 = 5 and
T64 =−2.
Finally, we assume that there cannot exist a toll-

setting scheme that generates profit and creates a
negative cost cycle in the network. This assumption
implies that the lower level optimal solution corre-
sponds to a set of shortest paths.
Labbé et al. (1998) used a mixed integer pro-

gramming formulation to solve to optimality small

Figure 1 An Optimal Solution with a Negative Toll

instances of the above road pricing problem. Their
formulation is based on the structure of the lower-
level solution, which corresponds to paths carrying
either no flow or all demand associated with a given
origin-destination pair. Upon introduction of

eki =



1 if i = o�k��
−1 if i = d�k��
0 otherwise�

and redefining xka and y
k
a as flow proportions, one can

reformulate RPP as

max
T�x�y

∑
a∈�1

Taxa

s.t. Ta ≤ Tmaxa ∀a ∈ �1�

min
x�y

∑
a∈�1
�ca+Ta�xa+

∑
a∈�2

daya

s.t.
∑
a∈i+

(
xka+yka

)− ∑
a∈i−

(
xka+yka

)= eki
∀k ∈��∀ i ∈ � �

xa =
∑
k∈�
nkxka ∀a ∈ �1�

ya =
∑
k∈�
nkyka ∀a ∈ �2�

xka ≥ 0 ∀k ∈��∀a ∈ �1�

yka ≥ 0 ∀k ∈��∀a ∈ �2�

Next one replaces the lower-level linear program by
its optimality conditions. This transformation gen-
erates a nonconvex constraint corresponding to the
complementarity slackness condition, which can be
linearized by introducing the commodity toll vari-
ables,

Tka = Taxka ∀a ∈ �1�∀k ∈��

as well as the constraints,

−Mxka ≤ Tka ≤Mxka ∀k ∈��∀a ∈ �1�

−M(
1−xka

)≤ Tka −Ta ≤M(
1−xka

) ∀k ∈��∀a ∈ �1�

xka ∈ �0�1� ∀k ∈��∀a ∈ �1�
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where M is some constant arbitrarily large with
respect to data values. These modifications yield the
mixed integer programming formulation:

max
T�x�y

∑
k∈�

∑
a∈�1

nkT ka

s.t.
∑
a∈i+

(
xka+yka

)− ∑
a∈i−

(
xka+yka

)= eki
∀k ∈��∀ i ∈ � �

�ki −�kj ≤ ca+Ta ∀a= �i� j� ∈ �1�∀k ∈��

�ki −�kj ≤ da ∀a= �i� j� ∈ �2�∀k ∈��∑
a∈�1

(
cax

k
a+Tka

)+ ∑
a∈�2

day
k
a = �ko�k�−�kd�k�

∀k ∈��

−Mxka ≤ Tka ≤Mxka ∀k ∈��∀a ∈ �1�

−M(
1−xka

)≤ Tka −Ta ≤M(
1−xka

)
∀k ∈��∀a ∈ �1�

xka ∈ �0�1� ∀k ∈��∀a ∈ �1�

yka ≥ 0 ∀k ∈��∀a ∈ �2�

Ta ≤ Tmaxa ∀a ∈ �1�

2. An Arc-Sequential Heuristic
If ��1� = 1, then a simple procedure proposed by
Labbé et al. (1998) yields the optimal toll. Indeed, let
�ka �Ta� be the cost of a shortest path from o�k� to d�k�,
for a given value of Ta. The maximum toll that will
make arc a attractive to a commuter travelling from
o�k� to d�k� is given by

�ka = �ka �	�−�ka �0��
Let the commodities be sorted in nonincreasing order
with respect to the quantities �ka , i.e.,

�1a ≥ �2a ≥ · · · ≥ � ���
a �

For a toll level Ta = �la, arc a will attract the com-
muters associated with commodity indices less than
or equal to l and the revenue generated by arc a is
given by

P
(
�la

)= �la∑
k≤l
nk�

If arc a were the sole toll arc, an optimal index l∗

would be obtained by setting

l∗ ∈ argmax
l

{
�la

∑
k≤l
nk
}
� (1)

and the corresponding optimal toll would be equal to
Ta = �l∗a .
If ��1� is larger than 1, one may apply this formula

iteratively to generate an initial solution. At each iter-
ation of this procedure, one optimizes with respect to
toll Ta, fixing the other tolls to their preceding value.
One must be careful, however, to take into account
the impact of Ta on the revenues generated by the
remaining toll arcs. Let Pk− (respectively P

k
+) denote

the sum of the tolls on the shortest path from o�k� to i
(respectively j to d�k�) and Pk the profit raised from a
user associated with commodity k on a shortest path
that does not pass through arc a. Then, for fixed tolls
Tb, b �= a, one may apply the following modification
of Equation (1), which takes into account the fact that
customers might not be diverted from their current
path to a path passing through a:

l∗ ∈ argmax
l

∑
k≤l

(
Pk−+�la+Pk+−Pk

)
nk� (2)

A generic iteration of this procedure, together with
the initialization phase, is outlined below.

An Arc-Sequential Heuristic
• Initialization

— Z (total profit) ← 0.
— Ta ←	, ∀a ∈ �1.
— Pk (profit generated from commodity k) ← 0,

∀k ∈�.

• Toll optimization
— Select a toll arc a= �i� j�.
— Set tolls (except on arc a) to their current value.
— Let �k�	� be the cost of a shortest path from
o�k� to d�k� with Ta set at 	.

— For every k ∈ �, determine the shortest path
from o�k� to i with respect to current tolls. Let
Ck− be its cost and compute the sum of the tolls
Pk− on that path.

348 Transportation Science/Vol. 35, No. 4, November 2001



BROTCORNE, LABBÉ, MARCOTTE, AND SAVARD
Toll Optimization on Multicommodity Networks

— For every k ∈ �, determine the shortest path
from j to d�k� with respect to current tolls. Let
Ck+ be its cost and compute the sum of the tolls
Pk+ on that path.

— �k�0�← Ck−+Ck++ ca.
— Let �min be the smallest toll value that induces
no negative circuit in the network.

— For every k ∈ K, set �0a =	 and �ka = �k�	�−
�k�0�.

— Order �ka in nonincreasing order: �
0
a ≥ �1a ≥

�2a ≥ · · · ≥ � ���
a .

— l∗ ∈ argmax�min≤�la≤Tmaxa

∑
k≤l�Pk− + �la + Pk+ −

Pk�nk.
— Update Pk and Ta ← �l

∗
a .

The procedure is halted whenever no improvement
is observed after a full cycle over the toll arcs has
been completed. Note that the ordering of the toll arcs
might clearly influence the quality of the solution.
The computational complexity of this algorithm is

dominated by the computation of shortest paths to
and from the arc a = �i� j� being optimized, and is
therefore O���1������ �3�.

3. A Primal-Dual Heuristic
The main difficulty in solving bilevel programs is
due to the complementarity constraints implicit in
the first-order optimality conditions of the lower-
level linear program. There are several ways to deal
with these constraints. In this section, we propose
an iterative algorithm which relies on the reformu-
lation of the toll problem as a single-level bilinear
program, through the use of an exact penalty func-
tion. The algorithm is a multicommodity generaliza-
tion of a primal-dual method proposed by Brotcorne
et al. (2000) for solving a freight tariff setting problem
where the lower level consists of a single-commodity
transportation problem. In the multicommodity case,
we introduce a quadratic penalty term that forces the
tolls associated with each commodity to be equal and
the resulting nonlinear problem is solved using Frank
and Wolfe’s (1956) linearization scheme.
Let A1 (respectively A2) be the node-arc incidence

matrix associated with the arcs in �1 (respectively �2).

If one redefines commodity flows as the set of flows
associated with a given origin, RPP can be written as:

RPP2 � max
T≤Tmax�x�y

∑
k∈�
Txk�

min
x�y

∑
k∈�
��c+T�xk+dyk��

A1x
k+A2yk = bk ∀k ∈��

xk� yk ≥ 0 ∀k ∈�� (3)

For fixed T , the follower’s problem (FP) of (3) is linear
and its constraint set is separable by commodities. We
denote by FPk the subproblem associated with com-
modity k and by �k the corresponding dual variables.
Replacing FP by its primal-dual optimality constraints
yields the following single-level program, which is
equivalent to RPP:

max
T≤Tmax�x�y

∑
k∈�
Txk

s.t. A1x
k+A2yk = bk ∀k ∈��

xk� yk ≥ 0 ∀k ∈��

�kA1 ≤ c+T ∀k ∈��

�kA2 ≤ d ∀k ∈��∑
k∈�
��c+T�xk+dyk−�kbk�= 0� (4)

The sole nonlinear constraint of the above problem is
the constraint stating the equality of the primal and
dual objectives. We penalize this constraint into the
objective to obtain the single-level bilinear program,

max
T≤Tmax�x�y

∑
k∈�
Txk−M1

∑
k∈�
��c+T�xk+dyk−�kbk�

s.t. A1x
k+A2yk = bk ∀k ∈��

xk� yk ≥ 0 ∀k ∈��

�kA1 ≤ c+T ∀k ∈��

�kA2 ≤ d ∀k ∈�� (5)

where M1 > 0. For each value of the index k, we
replace the toll vector T by a commodity vector Tk

and penalize the compatibility constraint,

Tk = T 1 ∀k ∈��
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to derive the twin-penalty mathematical program,

PEN � max
T≤Tmax�x�y��

F �T�x�y���

= ∑
k∈�

[
Tkxk−M1

(
�c+Tk�xk

+ dyk−�kbk)−M2��Tk−T 1��2
]

s�t� A1x
k+A2yk = bk ∀k ∈��

xk� yk ≥ 0 ∀k ∈��

�kA1 ≤ c+Tk ∀k ∈��

�kA2 ≤ d ∀k ∈�� (6)

where M2 is a positive penalty factor.
The aim of our general primal-dual scheme is to

induce, through updates of the penalty parametersM1

and M2, basis changes for the follower’s problem. In
this process, extremal flow assignments correspond-
ing to distinct values of the toll vector T are gener-
ated, and we expect one of these combinations to be of
high quality for RPP. These solutions can be improved
by noting that, for a given lower-level flow vector
�x�y�, one can derive the profit-maximizing toll vec-
tor that is compatible with �x�y� by solving a simple
linear problem (see also Labbé et al. 1998).
The algorithm is composed of three main steps.

At Step 1, given a feasible lower level basic solu-
tion �xk� yk�, the algorithm sets the toll vectors Tk to
the (partial) optimal solutions of the convex quadratic
program PEN. At Step 2, a new flow vector �xk� yk�
is obtained as the solution of the lower-level prob-
lem corresponding to the toll vectors Tk. Finally, Step
3 consists in computing the best common toll vec-
tor T that is compatible with the current flow vector
�xk� yk�. The algorithm is outlined below and its main
components will be explicit in the forthcoming sub-
sections.

A Primal-Dual Algorithm
Step 0. Initialization

1. $= 0 and Z∗ = −	.
2. Tk0 = 0 for all k ∈�.
3. Initialize M1 and M2.
4. Go to Step 2.

Step 1. Computation of the commodity tolls Tk. For
fixed xk$−1 and y

k
$−1, let T

k
$ and �

k
$ be solutions for the

penalized problem,

QP�x$−1�y$−1� � max
T��

∑
k∈�

[
Tkxk$−1−M1

(
�c+Tk�xk$−1

+dyk$−1−�kbk
)−M2��Tk−T 1��2

]
s�t� T k≤Tmax ∀k∈��

�kA1≤c+Tk ∀k∈��
�kA2≤d ∀k∈��

(The resolution of QP�xk$−1y
k
$−1�, including the update

of the penalty parameter M1, is discussed in §3.1.)
Step 2. Computation of commodity flow vectors xk and

yk. For fixed Tk$ , solve for each commodity k ∈�,

FPk � minx�y �c+Tk$ �xk+dyk

s�t� A1x
k+A2yk = bk�

xk� yk ≥ 0�

for xkl , y
k
l and the dual vectors �

k
l .

Step 3. Computation of optimal tolls for given flows. If
flows are identical to those of the previous iteration,
go to Step 4. Otherwise:
1. Let T̃$�x$� y$� be the optimal partial solution of

the linear program

max
T��

∑
k∈�
Txk$

s�t� T ≤ Tmax�
�kA1 ≤ c+T ∀k ∈��

�kA2 ≤ d ∀k ∈��∑
k∈�

(
�c+T�xk$ +dyk$ −�kbk

)= 0�
2. Z̃←∑

k∈� T̃$x
k
$ .

3. If Z̃ > Z∗, then Z∗ ← Z̃ and �T ∗�x∗�y∗� ←
�T̃$�x$� y$�� x$� y$�.
Step 4. Stopping criterion.

— If the stopping criterion is reached, then adopt
�T ∗�x∗�y∗� as the solution.

— Increase the quadratic penalty term M2.
— Set $← $+1 and go to Step 1.
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At Step 1 of the above procedure, we determine com-
modity tolls that achieve a high profit while being
“nearly equal,” and maintaining a low duality gap.
However, basis changes could be inhibited if the
penalty factor M1 is too strong (see next subsection),
i.e., the duality gap is too small and the algorithm
gets trapped into a local minimum. To circumvent this
problem, the penalty parameters M1 and M2 need to
be carefully updated. The adjustment strategies are
discussed in §4.
At Step 2, flow vectors that are compatible with the

current commodity tolls are computed. In the event
where lower-level shortest paths are nonunique, the
costs of the toll arcs are perturbed, in order to entice
the follower into selecting profit-maximizing paths.
More precisely,

ca ← ca+ �1−%�Ta if a ∈ �1�

It can be shown that, if % is suitably small, the lower-
level solution possesses the required property of max-
imizing the leader’s profit while being optimal with
respect to the original arc costs.
At Step 3, the algorithm computes a common toll

vector that maximizes total profit while maintaining
the lower level optimality of the current commodity
flows. The structure of this program is that of an unca-
pacitated multicommodity network flow problem and
is thus easy to solve.
The stopping criterion of the primal-dual heuristic

is based on the reduction rate of the objective func-
tion of the penalized problem evaluated at the end of
Step 2:

F
(
T$�x$� y$��$

)
= ∑
k∈�

[
Tkl x

k
l −M1

(
�c+Tk$ �xkl +dyk$ −�k$bk

)
−M2��Tk$ −T 1$ ��2

]
�

Since xk$� y
k
$ ��

k
$ are the primal and dual optimal solu-

tions for the follower’s problem for fixed toll level
Tk$ , the duality gap is zero, and the above expression
reduces to

F
(
T$��$� x$� y$

)= ∑
k∈�
Tk$ x

k
$ −M2

∑
k∈�

��Tk$ −T 1$ ��2�

Note that this monotone increasing function is discon-
tinuous whenever a change in tolls T (Step 1) induces
a basis change at the lower level (Step 2).

3.1. Resolution of the Quadratic Subproblem
At Step 1 of the algorithm, the convex quadratic pro-
gram QP�x$−1�y$−1� is solved using Frank and Wolfe’s
(1956) linearization method, whose main advantage
is to preserve the uncapacitated network structure of
the lower level multicommodity flow problem. Lower
bound constraints,

Tk ≥ Tmin� (7)

involving a large negative number Tmin are appended
to QP�x$−1�y$−1� in order to prevent the linearized
problem to yield an unbounded solution.
Let us drop, for ease of presentation, the iteration

index $. In the initialization phase, the penalty factor
M1 is reset to its initial value. At iteration m of the
Frank-Wolfe procedure, �Tm��m� solve the linearized
problem,

PL�Tm−1��m−1� � max
S�(

)TF �Tm−1��m−1�S

+)�F �Tm−1��m−1�(
s�t� Tmin ≤ Sk ≤ Tmax ∀k ∈��

(kA1 ≤ c+Sk ∀k ∈��

(kA2 ≤ d ∀k ∈�� (8)

where S = �Sk�k∈� and ( = �(k�k∈� are the auxiliary
variables of the linearized problem. Let �Sm�(m� be an
optimal solution of PL. We have:

*m ∈ arg max
*∈+0�1,

F �*�

= F �Tm−1+*�Sm−Tm−1���m−1+*�(m−�m−1���
�Tm��m� = �Tm−1+*m�Sm−Tm−1���m−1

+*m�(m−�m−1���
If the duality gap is not too small, the parameter M1

is increased.
Note that, at the end of Step 2 of the primal-dual

algorithm, the duality gap is necessarily equal to zero,
while it might assume positive values in the subse-
quent iterations of the Frank-Wolfe procedure. Since
a low value of the gap is positively correlated with a
small number of basis changes at Step 2, the number
of Frank-Wolfe iterates was deliberately set to a small
value in order to induce basis changes. Indeed, the
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larger the number of lower level solutions (basis) vis-
ited, the higher the probability of obtaining, through
the “inverse optimization” procedure of Step 3, a
near-optimal tax vector compatible with this basis.

3.2. Resolution of the Frank-Wolfe Subproblem
The efficiency of the overall algorithm depends on
the existence of an efficient method for solving the
Frank-Wolfe linear approximation subproblems. For
simplicity, we drop the iteration index m. The Frank-
Wolfe linearized subproblem takes the form

max
S�(

S1
-F

-T 1
+

���∑
k=2
Sk
-F

-T k
+

���∑
k=1
(k
-F

-�k

s�t� Tmin ≤ Sk ≤ Tmax ∀k ∈��

(kA1 ≤ c+Sk ∀k ∈��

(kA2 ≤ d ∀k ∈�� (9)

where, for each commodity k:

-F

-�k
=M1b

k�

For commodity 1, we have

-F

-T 1
= �1−M1�x

1−2M2

(
���T 1−

���∑
k=2
Tk

)t
�

and for the remaining commodities,

-F

-T k
= �1−M1�x

k−2M2�T
k−T 1�t�

where the symbol t denotes the transposition
operator.
The problem PL�T ��� is separable with respect to

the commodities. The linear program associated with
an arbitrary commodity, whose index is omitted, takes
the form

max
S�(

∑
�i� j�∈�1

Si� j
-F

-Ti� j
+∑
i∈�
(i
-F

-�i

s�t� Tmini� j ≤ Si� j ≤ Tmaxi� j ∀�i� j� ∈ �1�

(i−(j− ci� j ≤ Si� j ∀ �i� j� ∈ �1�

(i−(j ≤ di� j ∀ �i� j� ∈ �2� (10)

Let us partition the set of toll arcs �1 into the two
subsets:

�11 =
{
�i� j� ∈ �1�

-F

-Ti� j
> 0

}

and

�12 =
{
�i� j� ∈ �1�

-F

-Ti� j
≤ 0

}
�

Since the problem is a maximization problem, the
Si� j-component of the vector S associated with an arc
belonging to �11 will be set to its largest possible
value, i.e., Si� j = Tmaxi� j . The problem (10) can thus be
rewritten as:

max
S�(

∑
�i� j�∈�12

Si� j
-F

-Ti� j
+∑
i∈�
(i
-F

-�i

s.t. (i−(j− ci� j ≤ Tmaxi� j ∀ �i� j� ∈ �11�

Tmini� j ≤ Si� j ≤ Tmaxi� j ∀ �i� j� ∈ �12�

(i−(j− ci� j ≤ Si� j ∀ �i� j� ∈ �12�

(i−(j ≤ di� j ∀ �i� j� ∈ �2� (11)

Given that the partial derivatives -F/-Ti� j are non-
positive for all arc �i� j� ∈ �12, the component Si� j
will be set to its smallest possible value. Conse-
quently, we may restrict our attention to solutions of
the form Si� j = (i −(j − ci� j for all �i� j� ∈ �12 and
Tmini� j ≤(i−(j−ci� j ≤ Tmaxi� j for all �i� j�∈�12. Moreover,
since the constraint (i−(j − ci� j ≥ Tmini� j is never tight
if the lower bound Tmin is sufficiently large (negative),
the linearized problem can be expressed as

max
(

∑
�i� j�∈�12

�(i−(j− ci� j�
-F

-Ti� j
+∑
i∈�
(i
-F

-�i

s.t. (i−(j− ci� j ≤ Tmaxi� j ∀ �i� j� ∈ �11�

Tmini� j ≤ (i−(j− ci� j ≤ Tmaxi� j ∀ �i� j� ∈ �12�

(i−(j ≤ di� j ∀ �i� j� ∈ �2� (12)

Now, let us decompose the node-toll arcs adjacency
matrix A1 in A11 and A12 where A11 (respectively A12)
is the submatrix of A1 corresponding to the arcs of �11
(respectively �12). This notation is extended to the toll
and cost vectors, in the obvious way and we redefine
-F/-T as the vector of components associated with
arcs �i� j� ∈ �12. The problem becomes

max
(

�(A12− c12�
-F

-T
+M1(b

s.t. (A1 ≤ c+Tmax�
(A12 ≥ c12+Tmin12 �

(A2 ≤ d�
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Table 1 Symmetric Networks with 10 O-D Pairs

SR 2 SR 5 PD CPLEX

T max % T # T %OPT CPU # T %OPT CPU # T %OPT CPU # Nodes CPU

10 97�39 11 10 99�58 25 10 100�00 15 2 1
10 90�02 13 10 91�20 30 10 100�00 18 38 1
9 99�01 8 9 99�01 23 10 99�50 18 167 3

10 5 9�67 95�47 10�34 9�67 96�60 25�92 10�00 99�83 17�00 69�00 2�01
20 99�80 27 20 99�80 62 21 100�00 16 200 12
20 93�61 22 20 93�61 55 21 100�00 17 271 20
21 92�38 28 21 95�69 66 21 100�00 14 400 21

10 10 20�33 95�26 25�67 20�33 96�37 60�80 21�00 100�00 15�67 290�33 17�69
26 91�82 31 23 95�01 100 31 97�44 18 600 49
28 93�05 46 28 97�38 98 31 100�00 14 168 12
26 96�80 35 26 99�95 86 30 100�00 19 937 67

10 15 26�67 93�89 37�20 25�67 97�45 94�64 30�67 99�15 17�00 568�33 42�39
40 85�72 53 40 92�01 150 42 100�00 19 2400 316
38 96�18 59 38 96�18 148 39 100�00 18 1700 192
38 95�20 54 38 95�20 136 42 100�00 15 101 13

10 20 38�67 92�37 56�76 38�67 94�46 141�96 41�00 100�00 17�33 1400�33 173�60
10 99�51 11 10 99�51 27 10 97�48 17 110 3
10 94�75 9 10 94�75 26 10 100�00 19 209 5
9 99�07 9 9 99�07 22 10 99�07 16 5400 80

20 5 9�67 97�78 9�89 9�67 97�78 25�14 10�00 98�85 17�33 1906�33 29�17
21 96�26 25 21 97�59 57 21 99�26 19 52600 1743
21 85�88 24 21 96�51 61 21 98�44 19 3553 214
21 87�20 23 21 91�42 57 21 98�07 18 319 10

20 10 21�00 89�78 24�16 21�00 95�17 58�34 21�00 98�59 18�67 18824�00 655�80
24 93�19 40 23 93�59 88 31 99�13 22 42354 4990
28 97�90 39 28 97�90 99 31 99�82 21 22730 9520
26 94�99 38 26 97�24 87 30 96�43 22 39800 2071

20 15 26�00 95�36 38�79 25�67 96�24 91�31 30�67 98�46 21�33 38318�00 2682�59
* 36 88�96 69 36 88�96 157 40 99�55 25 62451 4516

31 89�74 63 35 95�47 135 37 97�89 26 800 47
38 88�37 53 38 91�23 167 42 99�24 22 1000 73

20 20 35�00 89�35 62�03 36�33 92�22 152�82 39�67 98�89 24�33 21417�00 1545�46

or

max
(

(

(
A12

-F

-T
+M1b

)
�

s.t (A1 ≤ c+Tmax�
−(A12 ≤−c12−Tmin12 �

(A2 ≤ d� (13)

Let z ∈ �m1�v ∈ �m12�u ∈ �m2 be the dual variables
associated with the constraints of (13), where m2 is the
number of toll-free arcs, m1 the number of toll arcs
and m12 the number of toll arcs belonging to �12. The

dual of this linear program is

TPP � min
u�z�v

du+ �c+Tmax�z+ �−Tmin12 − c12�v

s�t� A2u+A1z−A12v =A12
-F

-T
+M1b�

z�u�v ≥ 0�

The problem TPP is simply a transshipment problem
on a modified network G̃ = �� � �̃� whose arc set is
composed of

• the untolled arcs �i� j� ∈ �2, with costs di� j , whose
flow variables are denoted by ui� j ;
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Table 2 Symmetric Networks with 20 O-D Pairs

SR 2 SR 5 PD CPLEX

T max % T # T %OPT CPU # T %OPT CPU # T %OPT CPU # Nodes CPU

10 100�00 18 10 100�00 41 10 100�00 27 213 30
10 93�14 17 10 93�14 41 10 98�88 26 66 12
9 97�90 15 10 100�00 38 10 98�50 33 700 72

10 5 9�67 97�01 16�88 10�00 97�71 40�00 10�00 99�13 28�67 326�33 38�12
21 95�35 40 21 96�59 99 21 98�94 35 8700 1078
21 92�04 36 21 95�79 89 21 98�53 40 60900 5903

* 19 81�98 35 21 95�61 106 21 97�01 41 100500 18000
10 10 20�33 89�79 37�20 21�00 96�00 97�92 21�00 98�16 38�67 56700�00 8326�97

* 28 89�96 67 29 90�44 154 31 94�28 39 59200 18000
31 95�57 71 31 95�57 156 31 98�64 37 12900 3923

* 31 92�47 71 31 92�47 166 31 97�95 36 50500 18000
10 15 30�00 92�67 69�44 30�33 92�83 158�96 31�00 96�95 37�33 40866�67 13307�76

* 38 92�17 78 38 92�17 254 42 94�29 39 34300 18000
* 39 90�65 79 40 92�63 220 42 98�71 39 42700 18000

39 91�09 100 39 92�69 252 42 99�70 35 6500 936
10 20 38�67 91�30 85�44 39�00 92�50 241�92 42�00 97�57 37�67 27833�33 12312�14

• the toll arcs �i� j� ∈ �1, with costs ci� j+Tmaxi� j , whose
flow variables are denoted by zi� j ;

• the inverse arcs �j� i� such that �i� j�∈�12, with costs
−ci� j − Tmini� j , whose flow variables are denoted by
vi� j .

4. Numerical Results
The heuristics developed in this paper have been
tested on two varieties of randomly generated grid
networks with 60 nodes �5×12�, 208 two-way arcs, 10
to 20 origin-destination pairs, and where the propor-
tion of toll arcs varies from 5 to 20%. In Type I prob-
lems, toll arcs are scattered throughout the network
while, in problems of Type II, chains of toll arcs corre-
sponding to toll highways are generated. In the latter
case, a symmetric cost structure has been adopted for
the sake of realism. The process of randomly gener-
ating toll arcs is described in Brotcorne et al. (2000).
The upper bound Tmax has been set either to a low
value (10) or a high value (20), that is, the maximum
value of an arc’s initial cost ca.
For the primal-dual heuristic, the penalty factor M1

has been initialized to 1.1 and incremented by 0.1 at
the end of each Frank-Wolfe iteration, while the num-
ber of Frank-Wolfe iterations mFW has been set to a
low value (2) in order to induce basis changes at the

lower level. The setting of these parameters achieves
a trade-off between two conflicting objectives: maxi-
mizing the number of bases visited and reducing the
time-consuming process of optimization with respect
to each basis. Our choice is consistent with our com-
putational experiments; indeed we observed that the
best lower level bases generally occur at the begin-
ning of the process and that a rapid increase of the
penalty parameter M1 could prevent the algorithm of
discovering promising solutions (bases). As for the
quadratic penalty factor M2, it has been initialized to
10 and increased by units of 1. Finally the primal-
dual heuristic is halted as soon as the improvement in
the objective function value of the penalized problem
evaluated at the end of each main iteration becomes
smaller than 10% for blocks of 30 main iterations.
The heuristics developed in this paper were coded

in C and computational results obtained on a SUN
ULTRA (360 Mhz). The transshipment subproblems
were solved using the minimum cost flow code of
Goldberg and Tarjan (1990). The numerical results
are summarized in Tables 1–6, where the first two
columns of each table provide the value of Tmax and
the percentage of toll arcs, respectively. The “arc-
sequential” heuristic has been performed for vari-
ous permutations of the set of toll arcs; the results
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Table 3 Asymmetric Networks with 10 O-D Pairs

SR 2 SR 5 PD CPLEX

T max % T # T %OPT CPU # T %OPT CPU # T %OPT CPU # Nodes CPU

10 100�00 9 10 100�00 23 10 100�00 17 72 2
10 86�21 10 10 88�97 24 10 99�82 19 102 2
10 97�98 9 10 97�98 20 10 100�00 12 40 3

10 5 10�00 94�73 9�28 10�00 95�62 22�08 10�00 99�94 16�00 71�33 2�37
20 96�53 26 20 96�53 60 21 100�00 14 2 3
21 92�07 20 21 99�64 55 21 100�00 17 31 2
20 91�54 28 20 91�54 63 21 99�02 16 85 7

10 10 20�33 93�38 24�80 20�33 95�91 59�04 21�00 99�67 15�67 39�33 3�85
28 91�14 34 27 98�24 88 31 100�00 16 27 5
28 93�91 33 29 99�92 87 31 98�80 16 545 135
28 98�02 32 28 98�02 83 31 99�67 16 63 8

10 15 28�00 94�35 32�80 28�00 98�73 86�16 31�00 99�49 16 211�67 49�37
37 84�35 54 37 88�70 139 41 100�00 19 800 134
36 89�36 81 34 92�21 137 40 99�86 19 12 7
34 88�34 59 33 93�68 146 41 99�00 22 1282 210

10 20 35�67 87�35 64�56 34�67 91�53 140�48 40�67 99�62 20 698�00 117�25
10 95�52 8 10 100�00 21 10 100�00 16 719 23
10 100�00 9 10 96�90 23 10 100�00 16 165 6
10 97�94 9 10 97�94 24 10 100�00 16 377 13

20 5 10�00 97�82 8�80 10�00 98�28 22�64 10�00 100�00 16�00 420�33 14�08
20 93�84 24 20 93�84 64 21 98�63 19 400 12
20 91�25 20 21 94�04 54 21 99�00 19 3176 169
20 95�82 28 20 95�82 61 20 100�00 20 1429 89

20 10 20�00 93�64 23�76 29�33 94�57 59�76 20�66 99�21 19�33 1668�33 89�96
28 95�37 36 27 97�33 104 30 100�00 22 10288 563
29 85�28 36 29 89�70 88 31 98�08 17 2005 96
27 96�48 40 27 96�48 88 31 99�97 24 4200 257

20 15 28�00 92�38 37�44 25�67 94�50 93�68 30�67 99�35 21�00 5497�67 305�12
* 37 84�57 58 37 84�57 155 41 96�46 27 125000 18000

34 95�37 60 34 95�37 141 41 96�74 23 1300 106
* 31 83�94 66 31 88�34 144 40 92�58 26 163500 18000

20 20 34�00 87�96 61�36 34�00 89�43 146�72 40�66 95�44 25�33 96600�00 12035�33

corresponding to 2 (respectively 5) random permuta-
tions are displayed in column SR2 (respectively col-
umn SR5). The last line of each subtable contains the
average statistics for the corresponding data set, and
the column label “%OPT” refers to the ratio of the
heuristic objective over the optimal solution achieved
by the mixed integer programming code CPLEX 6.5,
which was halted whenever a time limit of 5 hours
was reached or memory requirements became exces-
sive. In both these cases, the optimum value was
replaced by the best upper bound achieved. This is
indicated by a star �∗� in the tables’ second columns.
The label “#T” refers to the number of toll arcs with

nonzero flow in the final solution. The label “NODES”
refers to the number of nodes of the branch-and-
bound tree explored while solving the MIP formula-
tion of the toll setting problem; the label “CPU” refers
to CPU times expressed in seconds.
As a general rule, the results were independent of

the network’s topology, and the primal-dual heuristic
sharply outperformed the “arc-sequential” one. Typ-
ically, the primal-dual heuristic produces solutions
within 1.5% of optimality, whereas the arc-sequential
heuristic provides solutions within 7% of optimality
for 2 toll arc permutations and within 5% of optimal-
ity for 5 toll arc permutations. With the exception of
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Table 4 Asymmetric Networks with 20 O-D Pairs

SR 2 SR 5 PD CPLEX

T max % T # T %OPT CPU # T %OPT CPU # T %OPT CPU # Nodes CPU

9 98�23 16 9 98�23 40 10 98�58 39 318 41
10 98�93 14 10 98�95 36 10 100�00 23 118 11
10 94�22 16 10 98�21 40 10 95�49 24 232 29

10 5 9�67 97�13 15�28 9�67 98�46 38�48 10�00 98�04 28�67 222�67 27�19
21 96�73 39 20 97�01 107 21 100�00 29 3000 403
21 89�26 33 21 89�26 82 21 100�00 28 59 18
21 91�66 43 21 95�51 102 21 99�93 45 900 128

10 10 21�00 92�55 38�24 20�67 93�93 97�04 21�00 99�98 34�00 1319�67 183�09
29 93�51 59 30 94�36 161 31 99�82 31 2906 7834
29 95�22 81 28 96�24 176 30 97�83 42 21176 86400
30 93�25 66 30 93�25 181 31 98�66 46 8229 14957

10 15 29�33 93�99 68�56 29�33 94�61 172�48 30�67 98�77 36�33 19786�33 5570�38
* 39 94�17 89 39 95�88 214 42 98�94 36 23900 18000
* 41 90�12 102 41 90�12 234 42 97�00 34 26000 18000

38 89�36 99 39 93�35 261 42 100�00 42 11400 9878
10 20 39�33 91�22 97�04 39�67 93�12 236 42�00 98�65 37�33 20433�33 15292�76

Table 5 Symmetric Networks with Highways: 10 O-D Pairs

SR 2 SR 5 PD CPLEX

T max % T # T %OPT CPU # T %OPT CPU # T %OPT CPU # Nodes CPU

19 93�19 21 19 97�31 51 20 100�00 18 120 6
20 88�43 20 20 93�99 55 21 100�00 17 21 4
21 82�38 20 21 87�01 64 21 98�86 17 400 27

10 10 20�00 88�00 20�48 20�00 92�77 56�67 20�67 99�62 17�33 180�33 12�47
27 89�62 40 30 93�84 87 29 99�88 18 394 27
28 92�61 54 28 92�61 129 31 100�00 15 401 39
23 91�76 37 23 97�44 88 27 100�00 17 500 45

10 15 26�00 91�33 43�68 27�00 94�63 101�32 29�00 99�96 16�67 431�67 36�98
37 95�79 60 37 95�79 125 41 100�00 18 428 35
35 94�38 59 35 96�02 139 40 99�43 17 152 15
37 97�46 47 37 97�46 120 41 99�49 15 778 100

10 20 36�33 95�88 55�20 36�33 96�43 127�80 40�67 99�64 16�67 452�67 49�88
19 96�33 20 19 96�33 50 20 98�53 21 2400 95
20 90�45 25 20 93�87 64 21 100�00 19 368 17
18 95�43 24 18 95�43 57 18 97�62 23 32300 922

20 10 19�00 94�07 23�20 19�00 95�21 56�88 19�67 98�72 21�00 11689�33 344�64
30 89�82 50 29 91�66 128 31 100�00 19 7100 484
25 94�80 39 25 94�80 93 31 100�00 20 71923 2033
19 85�38 48 21 87�77 133 27 100�00 22 4500 123

20 15 24�67 90�00 45�60 25�00 91�41 118�00 29�66 100�00 20�33 27841�00 880�06
* 33 91�60 60 33 91�60 143 41 96�95 23 375200 18000

31 95�54 58 31 95�54 126 40 99�52 23 2400 117
* 37 93�88 57 37 94�40 135 41 98�40 18 2100 111

20 20 33�67 93�67 58�48 33�67 93�85 134�48 40�67 98�29 21�33 126566�67 6075�71
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Table 6 Symmetric Networks with Highways: 20 O-D Pairs

SR 2 SR 5 PD CPLEX

T max % T # T %OPT CPU # T %OPT CPU # T %OPT CPU # Nodes CPU

19 95�75 36 19 95�75 89 20 99�17 33 14800 2291
20 94�53 37 20 96�26 95 19 100�00 31 3600 265
20 96�59 32 20 96�59 90 21 99�40 45 4500 755

10 10 19�67 95�63 35�28 19�67 96�20 91�44 20�00 99�52 36�33 7633�33 1103�46
30 97�43 48 30 97�43 126 30 99�46 38 12114 3149

* 28 84�91 99 28 87�87 251 29 92�00 45 55200 18000
* 31 88�59 68 31 88�59 163 30 91�54 58 2560 13908

10 15 29�67 90�31 71�92 29�67 91�30 180�16 29�67 97�66 33�79 30971�33 11685�66
* 36 89�34 75 38 90�66 205 39 95�45 32 32000 18000

38 95�69 79 38 95�69 201 40 99�11 40 6200 2914
* 33 91�29 79 35 92�29 229 38 97�24 41 23000 18000

10 20 35�67 91�77 77�68 37�00 92�88 211�84 39�33 97�32 39�37 20400�00 12971�33

the smallest problem (10 O-D pairs and Tmax = 10),
the proposed heuristics are much faster than the exact
MIP algorithm. It has been observed that the CPU
time required by CPLEX increases with the percent-
age of toll arcs, the number of O-D pairs and the
value of Tmax. Since the exact resolution was too costly
for symmetric and asymmetric networks with 20 O-
D pairs and Tmax = 20, the corresponding results are
not reported. While the computing time of the heuris-
tics also increases with the number of toll arcs as well
as the number of O-D pairs, this increase is more
modest for the primal-dual heuristic than for the arc-
sequential method. Indeed, the computing time of the
“arc-sequential” heuristic exceeds that of the primal-
dual method as soon as the number of arc permuta-
tions is larger than two.
While the primal-dual heuristic produces high-

quality solutions quite rapidly and consistently, the
situation is more contrasted with the “arcs sequen-
tial” method for which a deviation from optimality as
large as 12% has been observed for both Type I and
Type II problems. Even though the variation decreases
with the number of arc permutations considered, it
remains significant for a value as high as 5 permuta-
tions.

5. Conclusion
Tarification problems, which are pervasive in decision
making, naturally lend themselves to a bilevel pro-
gramming formulation with a specific structure. In

the current work, we showed that this structure is
amenable to numerical algorithms that can solve to
near-optimality large instances of this problem within
reasonable computing times. In particular, we devel-
oped a primal-dual heuristic procedure based on con-
cepts that can be extended to more general models
involving, for instance, congestion at the lower level.
This research avenue will be explored in the near
future.
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